Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons.
نویسندگان
چکیده
Sound categorization is essential for auditory behaviors like acoustic communication, but its genesis within the auditory pathway is not well understood-especially for learned natural categories like vocalizations, which often share overlapping acoustic features that must be distinguished (e.g., speech). We use electrophysiological mapping and single-unit recordings in mice to investigate how representations of natural vocal categories within core auditory cortex are modulated when one category acquires enhanced behavioral relevance. Taking advantage of a maternal mouse model of acoustic communication, we found no long-term auditory cortical map expansion to represent a behaviorally relevant pup vocalization category-contrary to expectations from the cortical plasticity literature on conditioning with pure tones. Instead, we observed plasticity that improved the separation between acoustically similar pup and adult vocalization categories among a physiologically defined subset of late-onset, putative pyramidal neurons, but not among putative interneurons. Additionally, a larger proportion of these putative pyramidal neurons in maternal animals compared with nonmaternal animals responded to the individual pup call exemplars having combinations of acoustic features most typical of that category. Together, these data suggest that higher-order representations of acoustic categories arise from a subset of core auditory cortical pyramidal neurons that become biased toward the combination of acoustic features statistically predictive of membership to a behaviorally relevant sound category.
منابع مشابه
Comparison of auditory-vocal interactions across multiple types of vocalizations in marmoset auditory cortex.
Auditory-vocal interaction, the modulation of auditory sensory responses during vocal production, is an important but poorly understood neurophysiological phenomenon in nonhuman primates. This sensory-motor processing has important behavioral implications for self-monitoring during vocal production as well as feedback-mediated vocal control for both animals and humans. Previous studies in marmo...
متن کاملTuning of cortical neurons to behaviorally salient acoustic signals.
Your pet cat has run off somewhere. It’s time to feed her, but she is nowhere to be found. You call for her, but she doesn’t come. It’s not the first time that this has happened. You wonder whether your cat is just playing hard to get, or perhaps she is just not neurally equipped to recognize and respond to your voice. Indeed, many animal species seem to depend on species-specific communication...
متن کاملFlexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance
Animals require the ability to ignore sensory stimuli that have no consequence yet respond to the same stimuli when they become useful. However, the brain circuits that govern this flexibility in sensory processing are not well understood. Here we show in mouse primary auditory cortex (A1) that daily passive sound exposure causes a long-lasting reduction in representations of the experienced so...
متن کاملEditorial: Neural Mechanisms of Perceptual Categorization as Precursors to Speech Perception
This research topic describes recent advances in understanding the brain functional organization for sensory categorization along with its implications for speech perception. Among the 14 papers, one theme is how neural representations of auditory and visual input are transformed across different scales of neural organization to enable speech perception, and another is the neural mechanisms of ...
متن کاملLoss of Prestin Does Not Alter the Development of Auditory Cortical Dendritic Spines
Disturbance of sensory input during development can have disastrous effects on the development of sensory cortical areas. To examine how moderate perturbations of hearing can impact the development of primary auditory cortex, we examined markers of excitatory synapses in mice who lacked prestin, a protein responsible for somatic electromotility of cochlear outer hair cells. While auditory brain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2015